19 research outputs found

    Dynamique des communautés bactériennes et effet du glyphosate lors du compostage de biomasse lignocellulosique

    Full text link
    Le compostage est un procédé anthropique basé sur le processus naturel de décomposition de la biomasse qui exploite l'activité enzymatique des microorganismes sous le contrôle de plusieurs facteurs environnementaux. Les résidus lignocellulosiques de par leur composition et leur faible pourcentage d'humidité sont particulièrement adaptés au compostage dans lequel ils jouent le rôle d’élément structurant. Bien que majoritairement d’origine végétale, la matière organique dirigée vers les sites de compostages est très diversifiée, tout comme les types de contaminants qu’elle peut incidemment contenir et dont l’impact sur les processus de biodégradation, et de surcroit leur rémanence dans l’environnement, reste largement à investiguer. L’objectif de cette thèse vise ainsi à faire état de l’effet de la composition de la biomasse lignocellulosique et de la présence d’un contaminant fréquent tel que le glyphosate sur le compostage. Pour ce faire, le suivi de la transformation de la matière organique végétale et de la dégradation du glyphosate, l’évolution des paramètres physicochimiques et la dynamique de recrutement des populations bactériennes ont été effectués tout au long du processus. Deux expériences menées sur le terrain visaient dans un premier temps à mesurer l’effet de l’âge d’une plante ligneuse, dans ce cas-ci le saule arbustif (Salix), et d’une période d’entreposage hivernal sur la transformation de la biomasse, et dans un deuxième temps à étudier les dynamiques de succession bactériennes impliquées dans le cycle du carbone et de l’azote lors du compostage de résidus végétaux. Les résultats obtenus ont révélé une différence dans la composition de la biomasse des tiges âgées de 2 ans et de 3 ans. Alors que les premiers contenaient plus de composés extractibles, les seconds étaient plus riches en sucres structuraux. Ces différences expliquent une hausse des températures plus forte et plus rapide dans le tas de copeaux de tiges plus jeunes. La diminution des composés extractibles, la conservation des sucres structuraux et l’augmentation de la proportion de lignine démontrent l’importance de la source de carbone soluble pour l’initiation de la décomposition du bois et la récalcitrance des éléments lignocellulosiques durant l’entreposage hivernal. La seconde expérience a mis en évidence une très grande diversité de bactéries responsables de la décomposition de la cellulose, des hémicelluloses et de la lignine durant la phase thermophile du compostage. Cette phase qui était le théâtre d’une activité intense comptait moins d’espèces, mais ces dernières étaient très abondantes, une tendance qui s’est inversée avec la maturation de la matière organique. La dynamique observée traduit une redondance fonctionnelle des communautés qui semblent évoluer selon la température, le taux d’oxygène et la nature du substrat disponible. Une troisième expérience menée en milieu contrôlé a ensuite démontré l’impact négligeable du glyphosate sur l’activité microbienne et l’évolution des paramètres physicochimiques lors du compostage. Le glyphosate était presque ou entièrement dégradé à l’issue du compostage et la présence du principal produit de dégradation, l’acide aminométhylphosphonique (AMPA) n’a d’ailleurs même pas pu être quantifiée durant l’expérience. L’impact du glyphosate sur les communautés bactériennes était également négligeable. Seules quelques bactéries étaient différentiellement abondantes entre les deux traitements, la grande majorité étant moins abondante dans le traitement contenant du glyphosate. La richesse en espèces aux différents temps d’échantillonnage était la même entre le traitement témoin et le traitement contenant du glyphosate « pur » et l’analyse de la bêta-diversité n’a relevé aucune différence significative entre les communautés présentes dans le traitement témoin et le traitement glyphosate. Cette thèse a ainsi fait valoir l’importance de la nature initiale de la matière organique sur l’activité microbienne, le recrutement et la dynamique des communautés durant le compostage, tandis que la présence du contaminant glyphosate s’est présenté comme un facteur beaucoup moins déterminant sur les processus de décomposition et l’abondance des espèces bactériennes. Ces informations devraient non seulement permettre d’optimiser le traitement de la matière organique par compostage, mais aussi de mieux évaluer les risques potentiels associés au compostage de biomasse contaminé.Composting is an anthropic process based on the natural decay of biomass that exploits the enzymatic activity of microorganisms under the control of several environmental factors. Due to their composition and low moisture content, lignocellulosic residues are particularly suitable for composting and serve as a structuring element, which confers them an important role in the process. Although mostly of plant origin, the organic matter (OM) directed towards composting sites is highly diversified, as are the types of contaminants it can contain. The impact of these contaminants, such as glyphosate, on the biodegradation process and their persistence in the environment remain to be investigated. The objective of this thesis is thus to report on the effect of the composition of the lignocellulosic biomass and the presence of glyphosate on the evolution of the physicochemical parameters and the recruitment of bacteria during composting, while ensuring the follow-up of the transformation of the vegetable organic matter and the degradation of glyphosate during the process. Two field studies were conducted to measure the effect of stem age and winter storage on the transformation of wood chips, and to study the dynamics of bacterial succession involved in the carbon and nitrogen cycle during the composting of plant residues. The results obtained revealed a difference in the composition of 2-year-old and 3-year-old stems from shrub willow (Salix sp.), with the younger ones containing more extractable compounds and the more mature ones richer in structural sugars. These differences were reflected in a higher and faster temperature rise in the younger chip pile. A decrease in extractives, retention of structural sugars, and an increase in the proportion of lignin demonstrate the importance of the soluble carbon source for the initiation of wood decomposition and recalcitrance of lignocellulosic elements. The second experiment revealed a very high diversity of bacteria responsible for the decomposition of cellulose, hemicelluloses and lignin during the thermophilic phase of composting. This phase, during which intense activity took place, had fewer species, but they were very abundant, a trend that reversed as the organic matter matured. The observed dynamics reflect a functional redundancy of the communities, which seems to evolve according to the temperature, oxygen level and nature of the available substrate. A third experiment conducted in a controlled environment demonstrated the negligible impact of glyphosate on microbial activity and the evolution of physicochemical parameters during composting. Glyphosate was almost or completely degraded after composting, while the main product of degradation, aminoethylphosphonic acid (AMPA), was not detected. The impact of glyphosate on bacterial communities was also negligible, while species richness at different sampling times was the same when comparing the control treatment and the treatment containing "pure" glyphosate. The beta-diversity analysis found no significant difference between the communities present in the control and glyphosate treatments, while a few bacteria were differentially abundant between the two treatments, the vast majority being less abundant in the glyphosate treatment. This thesis has thus highlighted the importance of the initial nature of the organic matter on microbial activity as well as on the recruitment and dynamics of bacterial communities during composting, while the presence of glyphosate was shown to be a weak determinant of decomposition processes and species abundance. This information should help to optimize the treatment of organic matter by composting and to better assess the potential risks associated with composting contaminated biomass
    corecore